Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cyclotetrabenzil, a shape‐persistent macrocyclic octaketone, is found to undergo eightfold condensation with hydroxylamine hydrochloride to yield its octaoxime. Subsequent acetylation of this macrocyclic oxime afforded the corresponding octaoxime acetate. Single‐crystal X‐ray diffraction reveals that both new derivatives assemble into nanotubular structures. However, their packing differs: the oxime forms hydrogen‐bonded tubes that bundle via included dimethyl sulfoxide (DMSO) molecules, whereas the acetate—lacking hydrogen‐bond donors—forms more loosely packed tubes with molecules tilted ∼54.5° relative to the tube axis. Gas sorption studies (CO2, C2, and C3hydrocarbons) show that cyclotetrabenzil is nonporous, whereas the oxime and acetate exhibit modest microporosity with BET surface areas of ∼200 m2g−1. Both derivatives display preferential uptake of propyne over propene and propane, and the acetate also adsorbs more acetylene than ethylene or ethane. Nonetheless, these capacities and selectivities are suboptimal for dynamic separation of C2and C3hydrocarbons. This study illustrates how oxime functionalization can modulate macrocyclic assembly and gas uptake behavior, providing insights for the design of future porous organic macrocycles.more » « less
-
Abstract Two new partially fluorinated dehydrobenzannulenes have been prepared by inter‐ and intramolecular oxidative homocoupling of diyne precursors. These systems contain fluorinated and nonfluorinated arene rings in a desymmetrized non‐alternant arrangement. Both macrocycles are roughly planar and organize into extended columns in the solid state. The assembly of these columns is mediated by the combination of dispersion interactions, slipped [π⋅⋅⋅π] stacking interactions of the perfluorinated rings with each other, and their association with the nonfluorinated rings in the molecules of the neighboring macrocycles. These results suggest that partial fluorination of dehydrobenzannulenes can serve as a versatile motif for their assembly into columnar superstructures.more » « less
-
Abstract The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape‐persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np‐POP) and the corresponding model compound by reacting the cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5‐tetraaminobenzene and 1,2‐diaminobenzene, respectively, under solvothermal conditions. Co‐crystallization of the macrocycle and the model compound with various solvent molecules revealed their size‐selective inclusion within the macrocycle. Building on this finding, thenp‐POP with a hierarchical pore structure and a surface area of 579 m2 g−1showed solvent uptake strongly correlated with their kinetic diameters. Solvents with kinetic diameters below 0.6 nm – such as acetonitrile and dichloromethane – showed high uptake capacities exceeding 7 mmol g−1. Xylene separation tests revealed a high overall uptake (~34 wt %), witho‐xylene displaying a significantly lower uptake (~10 wt % less than other isomers), demonstrating the possibility of size and shape selective separation of organic solvents.more » « less
-
Abstract Four extensively fluorinated tetraphenylethylenes (TPE) and one extensively fluorinated triphenylethylene have been synthesized using combinations of copper‐catalyzed C−H functionalization reactions and Stille coupling reactions. Surprisingly, in contrast to the parent TPE, these compounds show little to no aggregation‐induced emission (AIE). Instead, photocyclization into fluorinated phenanthrene products occurs. Effects of solvent and oxygen on the yield and selectivity of this photocyclization have been examined.more » « less
An official website of the United States government
